正因為步進(jìn)電機驅(qū)動器的廣泛應(yīng)用,對步進(jìn)電機驅(qū)動器的控制的研究也越來越多,在啟動或加速時如果步進(jìn)脈沖變化太快,轉(zhuǎn)子由于慣性而跟隨不上電信號的變化,產(chǎn)生堵轉(zhuǎn)或失步在停止或減速時由于同樣原因則可能產(chǎn)生超步。為防止堵轉(zhuǎn)、失步和超步,提高工作頻率,要對步進(jìn)電機驅(qū)動器進(jìn)行升降速控制。
步進(jìn)電機驅(qū)動器的轉(zhuǎn)速取決于脈沖頻率、轉(zhuǎn)子齒數(shù)和拍數(shù)。其角速度與脈沖頻率成正比,而且在時間上與脈沖同步。因而在轉(zhuǎn)子齒數(shù)和運行拍數(shù)一定的情況下,只要控制脈沖頻率即可獲得所需速度。由于步進(jìn)電機驅(qū)動器是借助它的同步力矩而啟動的,為了不發(fā)生失步,啟動頻率是不高的。特別是隨著功率的增加,轉(zhuǎn)子直徑增大,慣量增大,啟動頻率和運行頻率可能相差十倍之多。
步進(jìn)電機驅(qū)動器的起動頻率特性使步進(jìn)電機驅(qū)動器啟動時不能直接達(dá)到運行頻率,而要有一個啟動過程,即從一個低的轉(zhuǎn)速逐漸升速到運行轉(zhuǎn)速。停止時運行頻率不能立即降為零,而要有一個高速逐漸降速到零的過程。
步進(jìn)電機驅(qū)動器的輸出力矩隨著脈沖頻率的上升而下降,啟動頻率越高,啟動力矩就越小,帶動負(fù)載的能力越差,啟動時會造成失步,而在停止時又會發(fā)生過沖。要使步進(jìn)電機驅(qū)動器快速的達(dá)到所要求的速度又不失步或過沖,其關(guān)鍵在于使加速過程中,加速度所要求的力矩既能充分利用各個運行頻率下步進(jìn)電機驅(qū)動器所提供的力矩,又不能超過這個力矩。因此,步進(jìn)電機驅(qū)動器的運行一般要經(jīng)過加速、勻速、減速三個階段,要求加減速過程時間盡量的短,恒速時間盡量長。特別是在要求快速響應(yīng)的工作中,從起點到終點運行的時間要求最短,這就必須要求加速、減速的過程最短,而恒速時的速度。
國內(nèi)外的科技工作者對步進(jìn)電機驅(qū)動器的速度控制技術(shù)進(jìn)行了大量的研究,建立了多種加減速控制數(shù)學(xué)模型,如指數(shù)模型、線性模型等,并在此基礎(chǔ)上設(shè)計開發(fā)了多種控制電路,改善了步進(jìn)電機驅(qū)動器的運動特性,推廣了步進(jìn)電機驅(qū)動器的應(yīng)用范圍指數(shù)加減速考慮了步進(jìn)電機驅(qū)動器固有的矩頻特性,既能保證步進(jìn)電機驅(qū)動器在運動中不失步,又充分發(fā)揮了電機的固有特性,縮短了升降速時間,但因電機負(fù)載的變化,很難實現(xiàn)而線性加減速僅考慮電機在負(fù)載能力范圍的角速度與脈沖成正比這一關(guān)系,不因電源電壓、負(fù)載環(huán)境的波動而變化的特性,這種升速方法的加速度是恒定的,其缺點是未充分考慮步進(jìn)電機輸出力矩隨速度變化的特性,步進(jìn)電機在高速時會發(fā)生失步。
步進(jìn)電機驅(qū)動器的細(xì)分驅(qū)動控制
步進(jìn)電機驅(qū)動器由于受到自身制造工藝的限制,如步距角的大小由轉(zhuǎn)子齒數(shù)和運行拍數(shù)決定,但轉(zhuǎn)子齒數(shù)和運行拍數(shù)是有限的,因此步進(jìn)電機的步距角一般較大并且是固定的,步進(jìn)的分辨率低、缺乏靈活性、在低頻運行時振動,噪音比其他微電機都高,使物理裝置容易疲勞或損壞。這些缺點使步進(jìn)電機只能應(yīng)用在一些要求較低的場合,對要求較高的場合,只能采取閉環(huán)控制,增加了系統(tǒng)的復(fù)雜性,這些缺點嚴(yán)重限制了步進(jìn)電機作為優(yōu)良的開環(huán)控制組件的有效利用。細(xì)分驅(qū)動技術(shù)在一定程度上有效地克服了這些缺點。